This paper is relevant to the impact areas in the following areas:
Crops | Maize |
Traits | Insect Res. (BT), Insect Resistance, Other |
Countries | Philippines |
Regions | Asia |
Tags | bacterial stalk rot, ear rot, maize, Philippines |
In the Philippines and parts of Southeast Asia, Asian corn borer (Ostrinia furnacalis) is a serious pest of maize, and injury from this insect often is associated with the occurrence of bacterial stalk and ear rot (caused by Erwinia chrysanthemi pv. zeae). The effect of transgenic insect protection on the incidence of bacterial stalk and ear rot was studied in the Philippines with seven field trials in Mindanao and two trials in Laguna. Three transgenic hybrids (expressing Bt protein Cry1Ab) and their conventional near-isogenic counterparts were included in Mindanao, and one transgenic/conventional hybrid pair was used in Laguna (Los Banos). In the Mindanao trials, bacterial stalk rot was rated on a 1 to 9 scale approximately 2 weeks before harvest, while in Laguna, bacterial rot mortality and bacterial ear rot incidence were assessed 10 days before and at harvest, respectively. In all trials, the number of Asian corn borer tunnels was assessed by splitting stalks at harvest. Results of the trials showed significant differences between the transgenic hybrids and their conventional counterparts in terms of bacterial stalk and ear rot incidence, number of Asian corn borer tunnels, and yield. Transgenic hybrids invariably showed significantly lower bacterial stalk rot mortality and ear rot incidence, no Asian corn borer infestation, and higher yield compared with their conventional counterparts. Average yield advantage of transgenic hybrids ranged from 1.2 to 5.1 t/ha. Results confirm the important role of Asian corn borer in the initiation and spread of bacterial stalk and ear rot in maize; hence, the use of transgenic insect-resistant hybrids will have an added value in areas where this disease is prevalent.
Reduced Incidence of Bacterial Rot on Transgenic Insect-Resistant Maize in the Philippines (held on an external server, and so may require additional authentication details)
CropLife International fully acknowledges the source and authors of the publication as detailed above.