Biotech benefits

Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya

This paper is relevant to the impact areas in the following areas:

Crops
Traits,
Countries
Regions
Tags

Abstract or Summary

A study was conducted to assess the performance of maize hybrids with Bt event MON810 (Bt-hybrids) against the maize stem borer Busseola fusca (Fuller) in a biosafety greenhouse (BGH) and against the spotted stem borer Chilo partellus (Swinhoe) under confined field trials (CFT) in Kenya for three seasons during 2013–2014. The study comprised 14 non-commercialized hybrids (seven pairs of near-isogenic Bt and non-Bt hybrids) and four non-Bt commercial hybrids. Each plant was artificially infested twice with 10 first instar larvae. In CFT, plants were infested with C. partellus 14 and 24 days after planting; in BGH, plants were infested with B. fusca 21 and 31 days after planting. In CFT, the seven Bt hybrids significantly differed from their non-Bt counterparts for leaf damage, number of exit holes, percent tunnel length, and grain yield. When averaged over three seasons, Bt-hybrids gave the highest grain yield (9.7 t ha−1), followed by non-Bt hybrids (6.9 t ha−1) and commercial checks (6 t ha−1). Bt-hybrids had the least number of exit holes and percent tunnel length in all the seasons as compared to the non-Bt hybrids and commercial checks. In BGH trials, Bt-hybrids consistently suffered less leaf damage than their non-Bt near isolines. The study demonstrated that MON810 was effective in controlling B. fusca and C. partellus. Bt-maize, therefore, has great potential to reduce the risk of maize grain losses in Africa due to stem borers, and will enable the smallholder farmers to produce high-quality grain with increased yield, reduced insecticide inputs, and improved food security.

Download

Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya (held on an external server, and so may require additional authentication details)

CropLife International fully acknowledges the source and authors of the publication as detailed above.