Bacterial communities under long-term conventional and transgenic cotton farming systems using V3-V5 and V5-V9 of 16s rDNA

This paper is relevant to the impact areas in the following areas:


Abstract or Summary

Understanding the community structure of soil microbes is required to evaluate the potential effects of genetically modified (GM) plants on ecological environments. Bacterial communities in soil planted with conventional cotton (CC) and transgenic cultivar (TC) in a natural ecosystem for three years were characterized by 454 pyrosequencing of the V3-V5 and V5-V9 regions of 16S rDNA from June to September 2013. V3-V5 and V5-V9 regions yielded a total of 12,848 and 10,541 OTUs, respectively. The V5-V9 amplicon was additionally used to detect phyla that were poorly sequenced by V3-V5 (such as Chlamydiae, Crenarchaeota and Archaea). Among the species detected by each primer pair, 46% of the species identified from V3-V5 and 60% of those identified from V5-V9 were detected by both primer pairs. Although distinct bacterial compositions existed between the two amplified regions, statistical analysis revealed no significant difference in the diversity indexes or phylogenetic patterns in TC versus compared to those in the CC control. Further, clustering analysis in both regions indicated that there was no unambiguous aggregation in TC compared to that in CC control. Of all 26 phyla detected by both regions, each region detected 2 distinct phyla exhibiting significant variations in abundance. The species unique to each treatment field accounted for less than 27% of all species and were rare taxa (abundance < 0.15%). However, a small fraction of diagnostic taxa with specific ecological functions differed significantly between TC and CC. These differences were not driven by any obvious environmental factors. The results established a comprehensive inventory of the bacterial communities associated with GM plants and indicated that transgenic cotton may not significantly affect soil microorganisms compared with conventional cotton over a three-year period. Furthermore, diagnostic taxa were provided for monitoring the perturbation in soil, but further verification in future studies is required.


Bacterial communities under long-term conventional and transgenic cotton farming systems using V3-V5 and V5-V9 of 16s rDNA (held on an external server, and so may require additional authentication details)

CropLife International fully acknowledges the source and authors of the publication as detailed above.